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1 Introduction

In our current day and age, cryptography and privacy are increasingly important

matters. With an ever-increasing number of cyber-criminals looking to intercept

sensitive data, we must ensure that our encryption schemes are up to par. But

with quantum technology quickly evolving, many of our classic mathematical

techniques in cryptography are under threat. In the following discussion we

will inspect the mathematics behind the most common encryption mechanism:

RSA.

2 Asymmetric Cryptography

Before we start discussing RSA, we must first understand Symmetric and Asym-

metric Cryptography. Up until the late 20th century, cryptography consisted

solely of symmetric algorithms.

Definition: Symmetric Cryptography

Symmetric Cryptography uses the same key to encrypt and decrypt mes-

sages. Suppose k is a secret key, M is a message, C is the ciphertext,

and E and D are encryption and decryption functions, respectively.

E(M,k) = C

D(C, k) = M

To put this definition into perspective, consider the Caeser cipher, which

takes letters of the alphabet and shifts them according to a key. The k = 13

case is a popular example, since applying the shift twice decrypts the message.

So essentially E = D for this algorithm, and it is often referred to as ROT13.

Clearly ROT13 is not a safe or secure encryption scheme, but there are

many widely used symmetric algorithms. Several of these include AES, DES,

and Blowfish. While these are very interesting examples, we will focus our

discussion on Asymmetric cryptography.
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Definition: Asymmetric Cryptography

Rather than using one secret key, Asymmetric Cryptography uses a pair

of related keys for encryption and decryption. If we suppose E is an

encryption method which uses some public key e, and D is a decryp-

tion method which uses a private key, d, we should have the following

properties.

D(E(M)) = M

E(D(M)) = M

Also, E and D should be easy to compute, but revealing e should not

disclose an easy way to compute d.

So what gives an asymmetric scheme an advantage over a symmetric scheme?

If a user wants to communicate with lots of third-parties using a symmetric

scheme, the user would need to have a separate key for every single communi-

cation (otherwise, one recipient could decrypt another recipient’s communica-

tions). For large corporations like banks, the amount of keys to keep track of

quickly gets out of hand.

With asymmetric encryption, the corporation can have one ”public key”

which they distribute to every client they want to talk to. The clients can use

this key to encrypt their communications, and the bank uses their ”private key”

to decrypt them. With asymmetric encryption, each party only needs one key-

pair to communicate securely!

Another advantage of asymmetric cryptography is digital signatures. If Al-

ice wants to send a verified message, M , they can simply pass it into their

decryption function, D. When Bob receives D(M), they can use Alice’s public

encryption function, E, to recover the message: E(D(M)) = M . Since Bob can

be sure that no one else could have used Alice’s decryption function to generate

D(M), Bob can be sure that the message really came from Alice!

Now that we understand the rationale of asymmetric cryptography, it is time

to look at a real example: RSA!

3



3 The RSA Algorithm

RSA [1] is named after its three creators, R. Rivest, A. Shamir, and L. Adleman,

who came up with the method in 1977.

Figure 1: Shamir, Rivest, and Adlemen in 1977

The RSA algorithm uses modular math and number theory to achieve the

goals of the asymmetric encryption scheme. The algorithm works as follows.

The RSA Algorithm

1. First, pick two large distinct primes p and q.

2. Compute n = p · q, and ϕ = (p− 1)(q − 1).

3. Choose e such that 1 < e < ϕ and gcd(e, ϕ) = 1.

4. Compute d where e · d ≡ 1 (mod ϕ)

5. Then (e, n) is the public key, and (d, n) is the private key.

6. To encrypt a message, m, the user computes c = me (mod n).

7. To decrypt a message, c, the user computes m = cd (mod n).
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3.1 Correctness of the Algorithm

We will start off by showing that this method is correct.

3.1.1 Euler’s Totient Function

You can see ϕ showing up multiple times in the algorithm. This is actually

Euler’s totient function evaluated at n.

Euler’s Totient Function

We define ϕ : N → N as follows.

ϕ(n) = #{1 ≤ m < n : gcd(m,n) = 1}

The # symbol denotes the number of elements in the set. Note that by

definition ϕ(p) = p− 1 when p is a prime.

In step 2, we calculate ϕ(n) by taking (p− 1) · (q − 1). This comes directly

from the following result.

Theorem: Multiplicity of Euler’s Totient Function

Suppose we have p, q which are distinct prime numbers. Then we have

the following.

ϕ(pq) = ϕ(p)ϕ(q) = (p− 1)(q − 1)

Proof: Notice that ϕ(pq) is the number of elements in the following set

which are relatively prime to pq.
1, 2, · · · , p,

p+ 1, p+ 2, · · · 2p,
...

...
. . .

...

(q − 1)p+ 1, (q − 1)p+ 2, · · · qp


The elements in the set which are not relatively prime to n (not including

n itself) are in the following sets.

P = {p, 2p, 3p, · · · , (q − 1)p}

Q = {q, 2q, 3q, · · · , (p− 1)q}
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We will show that these sets are disjoint. Suppose a ∈ P ∩Q. Thus a ∈ P

and a ∈ Q. Therefore a = jp = kq where j, k ∈ Z. By Euclid’s Lemma, p|a
implies p|k or p|q. Clearly p ∤ q (since p and q are distinct primes), so p|k. But
0 < k < p, so this is a contradiction. The sets P and Q must be disjoint.

So clearly ϕ(n) = pq− (|Q|+ |P |)− 1. Note that the extra −1 is accounting

for n itself not being counted in Q or P .

ϕ(n) = pq − (p− 1 + q − 1)− 1

= pq − p− q + 1

= (p− 1)(q − 1) = ϕ(p)ϕ(q)

Therefore ϕ(n) is multiplicative over the product of two distinct primes.

3.1.2 Modular Multiplicative Inverses

In step 4 of the RSA Algorithm, we choose d such that e · d ≡ 1 (mod ϕ(n)).

We will show that such a d exists and is unique.

3.1.3 Bezout’s Identity

Before we can prove d exists, we must show an important result relating linear

combinations and greatest common divisors - Bezout’s Identity.

Theorem: Bezout’s Identity

Suppose a, b ∈ Z. Then ∃x, y ∈ Z s.t.

ax+ by = gcd(a, b)

Proof: Suppose a, b ∈ Z with g = gcd(a, b). Notice that by definition g|a
and g|b. Thus a = ga0 and b = gb0 where a0, b0 ∈ Z. So we get the following

where x, y ∈ Z.

ax+ by = ga0a+ gb0b = g(a0a+ b0b)

Therefore g|(ax+by) → ax+by = l ·gcd(a, b) where l ∈ Z. Now consider the

set S = {ax+by|x, y ∈ Z, ax+by > 0}. Notice that a+b ∈ S, so S ̸= ∅. By the

Well-Ordering Principle, this set has a smallest element, d. Suppose B.W.O.C.

6



that d ∤ a. So by the division algorithm, ∃q, r ∈ Z s.t. a = dq+ r and 0 < r < d.

Now notice that dq = q(ax0 + by0) = a− r. But then r = a(1− qx0)− b(qy0).

So r ∈ S and r < d, and d was chosen as the minimum element in S, so this is

a contradiction. WLOG we also have d|b.
Finally, suppose we have c ∈ N s.t. c|a and c|b. Clearly this implies c|(ax+by)

for all x, y ∈ Z, including x = x0 and y = y0. Thus c|(ax0 + bx0) → c|d.
Therefore d is the greatest common divisor of a and b.

3.1.4 Existence of Inverses Modulo n

Now we will show the result which allows us to pick d such that e · d ≡
1 (mod ϕ(n)) when gcd(e, ϕ(n)) = 1.

Theorem: Existence of Modular Multiplicative Inverses

Let a, n ∈ N. Then gcd(a, n) = 1 iff there exists a−1 ∈ Z which we call

the modular multiplicative inverse of a.

a · a−1 ≡ 1 (mod n)

Proof: Suppose a, n ∈ Z s.t. gcd(a, n) = 1. By Bezout’s Lemma, we must

have x, y ∈ Z with the following property.

ax+ ny = gcd(a, n) = 1

Taking this whole relation modulo n, we get the following.

ax+ ny ≡ ax ≡ 1 (mod n)

Therefore x = a−1. Now suppose we have an inverse of a.

a · a−1 ≡ 1 (mod n)

Thus n|(a · a−1 − 1). So ∃k ∈ Z s.t. a · a−1 − 1 = nk. We can rearrange this

into a nicer form.

a · a−1 + n(−k) = 1

Notice that since we have a linear combination of a and n, this must be some

multiple, l ∈ Z, of gcd(a, n) by Beozout’s Lemma.
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l · gcd(a, n) = 1

Since we are concerned with positive integers a and n here, we see that l = 1,

and thus gcd(a, n) = 1. Finally, suppose that ay ≡ 1 (mod n) but y ̸≡ a−1. But

ay ≡ a · a−1 (mod n) → y ≡ a−1 (mod n). So clearly, the multiplicative inverse

must be unique. And this is an important property for a cryptographic private

key.

3.1.5 Euler’s Theorem

We have shown that steps (1)-(5) work out. Now it is only left to show that

(me)d ≡ me·d ≡ m (mod n).

Euler’s Theorem

Suppose gcd(a, n) = 1. Then we have the following relationship.

aϕ(n) ≡ 1 (mod n)

Proof: Consider the set of numbers k less than n which are relatively

prime to n. By definition, there will be ϕ(n) of them.

K = {k1, k2, · · · , kϕ(n)}

Now suppose a ∈ K. Notice that a · ki will be a member of K since

both a and ki are relatively prime to n (for any i). Thus it is clear that

aK = {ak1, ak2, · · · , akϕ(n)} (mod n) is a permutation of K. This leads to

the following fact.

ϕ(n)∏
i=1

ki =

ϕ(n)∏
i=1

aki

Reducing modulo n and factoring out a, we get the following.

ϕ(n)∏
i=1

ki ≡ aϕ(n)
ϕ(n)∏
i=1

ki (mod n)

Finally, since the products will be relatively prime with n, they will have

modular multiplicative inverses (from the previous result). Therefore we can

essentially cancel them out, to yield the final result: aϕ(n) ≡ 1 (mod n).

8



3.2 Example

It is easy to create a basic example in Python. The following short script

successfully generates an RSA key-pair according to the algorithm, and en-

crypts/decrypts a message.

from Crypto.Util.number import long_to_bytes, bytes_to_long

from Crypto.Util.number import getStrongPrime, inverse

# step 1: generate our primes p and q

p = getStrongPrime(512)

q = getStrongPrime(512)

# step 2: calculate n = p * q and phi(n)

phi = (p - 1) * (q - 1)

n = p * q

# step 3: choose an e less than phi and relatively prime to n

# this value is a commonly chosen as the public exponent

e = 65537

# step 4: calculate d as the inverse of e modulo phi(n)

d = inverse(e, phi)

# step 5: declare the public and private keys

print(f"[+] Public Key: ({n}, {e})\n")

print(f"[+] Private Key: ({n}, {d})\n")

# step 6: perform encryption and decryption

m = bytes_to_long(b"This is a secret message!")

# c = m^e (mod n)

c = pow(m, e, n)

print(f"[+] Encrypted Message in Hex: {hex(c)}")

# always holds due to euler's theorem :)

assert(m == pow(c, d, n))
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Here is some sample output from the script. We can see the (rather large)

keypairs and the result of the encryption.

[+] Public Key: (137636178308258524865973987271282171307145802466330554433

69048144428330337413531876737183125869090259322719429722910469490252010000

44702889270269449753257261133966491783659307105182576062963823359818093111

04053409756125861943080936864666062490557602741227836027765864869847453152

990174803506805705525589111541, 65537)

[+] Private Key: (13763617830825852486597398727128217130714580246633055443

36904814442833033741353187673718312586909025932271942972291046949025201000

04470288927026944975325726113396649178365930710518257606296382335981809311

10405340975612586194308093686466606249055760274122783602776586486984745315

2990174803506805705525589111541, 79865819687882622673117853455904141059850

88914646817301003731203510459349703208931449995225501253238198020922424471

09639203493733779391888186201335194876351373034043472215649239108314339831

82637994658164274979113543601465959552931442199877394789015811835953808090

530473839991327519431261907574433915885826077)

[+] Encrypted Message in Hex: 0x69a78c5ad991377db7fe16c9d2d81dea4fd600ad14

88f58d14cabb3cf8448562441c74c9228ad768e9f2d5cdfadeb052ba697109a95667392eaa

ccd1ae825dbce00515bd64c2e60e4186547e68887204866df523150d9d06c74609ba609302

3a50169d4d9d081713dd62070763adc12ac11834ca86f025b68a4c4447e27e7b0e

For computers, storing numbers in base 10 is not always practical. Since

computers use binary (base-2) at the lowest level, it becomes more convenient

to use bases which are powers of 2. This is why hexadecimal and base-64 are so

common in computing (plus, they also take less bytes to store larger numbers).

For example, my public GPG key is below. As you can see, it is stored in base-

64. This is what you could use if you wanted to send me an encrypted (and/or

signed) email. Since it uses 2048 bit keys, it should be secure for the time being.

Good luck factoring this n!
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-----BEGIN PGP PUBLIC KEY BLOCK-----

mQENBGOIPe4BCADP5W5CcULozcP3XRXfIfXdYd3EI3kOGtse37OhfAzoxg+uxubF

ladGltgsHMZrNFk5M7uUCw9o+BfC04aTokWxtACx1IfFRRmsDJqv/rGoAaeIylcC

QwgA+gyEN3uyZjnHsa1mRlZl1aqbBm4JwPkgXGmJi0R0vddolSmvg9Ob8jmHfH0r

gUp/iBbB3RUXV/tIMtF9Jaynvwuw6iclO0wIIltZY43oOUfoH9929mYSjLLgXd9m

0OKUs0dylxBi24kbfJTISp/gfuur7SS3i+Gh3XtMX4A/Ly7ycoLdGQhl4Fc+gdeO

8tFQbEHkRWBnoYSmHyw5eXwwNFgQOec3YaJPABEBAAG0J01pY2hhZWwgSG9lZmxl

ciA8aG9lZmxlcjIwMDJAZ21haWwuY29tPokBVAQTAQgAPhYhBHI2hn9y+XNg6Ktr

zxV6sA1uV6q8BQJjiD3uAhsDBQkA7U4ABQsJCAcCBhUKCQgLAgQWAgMBAh4BAheA

AAoJEBV6sA1uV6q8wG8IAKXGYIa1VDNlaWYD0p0udEuAEdcbRj+hpcFBpHtX2SpR

1x3pif6k1C+XvWNuiiJ48In75DuvZicnrR2UijUrlFnyZJF8ZHYS9lRx5ZWjPbL5

wBmU8c/PiIGkhW7InfElIMg4twor3JgSQsG8I0EDsMlJaSW/sjtxbCK/kj7zOEDs

4DdkCMTXuBQSmLYEhs5qocaZZIKNsj19I8zX/JExjRYwlUuQKxQ9K9U/DyCTClmp

dADwyH5lreH/flHPWn+mo8beA+WReo6mmAmHtJzVscbXbau8QBoanV+z3Ar+tCpI

/Xp3UbX8OiBnIEDvQ8Dp6KjlL2TbqM+pEM6nLK5qkuS5AQ0EY4g97gEIALPov/D+

asw4M3uzq8M/TZncX+gNr54RInPa1HMW+xm2Sj/HyXOBbb43dklMr/gt59ZgBeUh

WxoqGxVq9hOAxBrs97wiTIDxQoXue2IN9EHNQNo06ONUFNM3cHXXaowhxW/kn3UC

D86ZCi4Dsy96hVzyRJxnaJ1KOtpPyQah8Lf/n01lZaeJ2i60zvxKdAQwFHWQtAAa

1G3zNnTWsUyworHfAVyLgvbVAaRBogmbjKXS3v+86+GAZzkQidICAxEwE2INIfbc

FqC9c+QXsdrl5rBBFWraooq7sFw2ez03X80NKfsMx7HtgUu+vX1Np4xyN/r6ebgg

zQgBhHVdrarLVhEAEQEAAYkBPAQYAQgAJhYhBHI2hn9y+XNg6KtrzxV6sA1uV6q8

BQJjiD3uAhsMBQkA7U4AAAoJEBV6sA1uV6q8S+QH/j744I9DJkYqpxVhdowWem1o

1jIGv9DV8JhLT8Iml4phIAcIzUFMB+QwVTPH/MN4+6Wnpd7OgIDeGB6DwAaOhSpx

Zhvh4Z0I/SJWYit6oDxbnSfL3+GQmTnMOAxqzI1fUbmu6prWxpJZ1PSZep3T//KP

A46TqiRRBG7KTg3+S+9IzLbexck5zL36urgi3pRpDQBhpTpeQdp0qasoiZVEtq4J

AiDllYE/wMp+f7GifuxT4E1ZkODDwpC72yBC1bPsxFHFRnpu0GEg5ISBTzwSz2CF

8LaQBMaNda+94Fk0BV8lAfp1fCUbZ35eTzQ6T23wkkvWGio34BVI5JwzE/yp6CQ=

=83s3

-----END PGP PUBLIC KEY BLOCK-----
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4 Conclusions

We have shown the correctness of the popular RSA cryptosystem and have

explored some of the number theory lying behind the algorithm. Due to recent

advances in Quantum computing, this method might not be around for much

longer. Either way, it offers a very interesting application for number theory

concepts, which will be explored for years to come.
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